A blow-up result for a Nakao-type weakly coupled system with nonlinearities of derivative-type
نویسندگان
چکیده
In this paper, we consider a weakly coupled system of wave and damped Klein-Gordon equation with nonlinearities derivative type. We prove blow-up result for the Cauchy problem associated nonnegative compactly supported data by means an iteration argument.
منابع مشابه
a cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولthe investigation of the relationship between type a and type b personalities and quality of translation
چکیده ندارد.
Blow - up analysis for a doubly nonlinear parabolic system with multi - coupled nonlinearities ∗
This paper deals with the global existence and the global nonexistence of a doubly nonlinear parabolic system coupled via both nonlinear reaction terms and nonlinear boundary flux. The authors first establish a weak comparison principle, then by constructing various upper and lower solutions, some appropriate conditions for global existence and global nonexistence of solutions are determined re...
متن کاملa new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot
abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...
15 صفحه اولBlow-up with logarithmic nonlinearities
We study the asymptotic behaviour of nonnegative solutions of the nonlinear diffusion equation in the half-line with a nonlinear boundary condition, ut = uxx − λ(u + 1) log(u + 1) (x, t) ∈ R+ × (0, T ), −ux(0, t) = (u + 1) log(u + 1)(0, t) t ∈ (0, T ), u(x, 0) = u0(x) x ∈ R+, with p, q, λ > 0. We describe in terms of p, q and λ when the solution is global in time and when it blows up in f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2022
ISSN: ['1432-1807', '0025-5831']
DOI: https://doi.org/10.1007/s00208-022-02456-y